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Nonlinear Model for Aircraft Brake Squeal Analysis:
Model Description and Solution Methodology

Steven Y. Liu,* James T. Gordon,† and M. Akif Özbek‡
The Boeing Company, Seattle, Washington 98124

A model is presented for the analysis of primary squeal-mode vibration in aircraft braking systems.
The destabilizing mechanism in the model utilizes nonlinear mechanical and material surface properties
of the brake heat stack to couple lateral translation and yaw of the rotors and stators. Geometric and
stiffness properties of the brake and landing-gear structure couple piston-housing torsional rotation and
axle fore – aft bending with lateral translation and yaw of the heat stack. The model does not use brake
negative damping and it predicts that system instability can occur with a constant brake-friction coef� -
cient as has been observed on both dynamometer and � ight tests. System stability can be altered by
changes in the brake-friction coef� cient, pressure, stiffness, geometry, and various brake-design param-
eters. Enhanced versions of the model are presented that include a more detailed structural representation
of the piston-housing torque tube and the hydraulic � ow equations for each piston. The model is extended
to a fore – aft wheel pair on a two-axle, main-landing gear truck. Stability is investigated by determining
eigenvalues of the linearized perturbation equations about each steady-state operating point of the non-
linear system. The nonlinear dynamic equations are integrated numerically to obtain time– history re-
sponses. Results from stability analyses and parametric studies using this model are presented in a com-
panion paper.

Nomenclature
Ak = p 2 ), k = 2, 3, 4, 5, 6, (in.)kk k(R Ro i

Bx = (xs0 2 xr0), in.
Bf = (fs0 2 fr0), rad
C lug = lug fore– aft damping coef� cient, lb/in./s
Cwk = wheel key yaw damping, lb-in./rad/s
Cxr = rotor lateral translational damping, lb/in./s
Cxs = stator lateral translational damping, lb/in./s
Cyax = axle fore– aft de� ection-damping coef� cient, lb/in./s
Cu = piston-housing torsional damping, lb-in./rad/s
Cfax = axle-bending rotation-damping coef� cient,

lb-in./rad/s
Cfr = rotor yaw viscous damping, lb-in./rad/s
Cfs = stator yaw viscous damping, lb-in./rad/s
de = brake-rod lateral offset, in.
Fdrag = tire– ground drag load, lb
Fhyd = lateral force (brake pressure), lb
Fn = rotor/stator contact force, lb
F̂n = rotor/stator contact stress, lb/in.2

Frod = brake-rod axial load, lb
F t = tangential force, lb
F̂ t = tangential stress, lb/in.2

Iaxle = axle moment of inertia, lb-in.-s2

Iw = wheel inertia, lb-in.-s2

Iu = stator polar moment of inertia, lb-in.-s2

Ifr = yaw polar moment of inertia, lb-in.-s2

Ifs = yaw polar moment of inertia, lb-in.-s2

K lug = center-lug fore– aft stiffness, lb/in.
Krod = brake-rod axial stiffness, lb/.in.
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Krr = lateral stiffness of rotor (caused by backing plate),
lb/in./rad

Kwk = yaw stiffness of wheel key, lb-in./rad
Ku = piston-housing torsional stiffness, lb-in./rad
Kfr = rotor yaw stiffness (caused by backing plate),

lb-in./rad
Kfs = stator yaw stiffness, lb-in./rad
K11 = axle-bending y 2 y stiffness, lb/in.
K12 = axle-bending y 2 f stiffness, lb/rad
K21 = axle-bending y 2 f stiffness, K12, lb/rad
K22 = axle-bending f 2 f stiffness, lb-in./rad
Mb = yaw moment, lb-in.
maxle = axle mass, lb-s2/in.
m lug = center-lug mass, lb-s2/in.
mr = rotor mass, lb-s2/in.
ms = stator mass, lb-s2/in.
N = number of brake stages, nondimensional
Pnet = net-brake hydraulic pressure, lb/in.2

pi = hydraulic pressure at piston i, lb/in.2

p0 = inlet pressure, lb/in.2

Q0 = inlet � ow, in.3/s
Rb = piston-housing bushing radius, in.
Re = distance axle to brake-rod axis, in.
Ri = friction surface inner radius, in.
Ro = friction surface outer radius, in.
Rr = rolling radius of tire, in.
Rw = wheel radius, in.
r = radius (integration variable), in.
reff = friction-material effective radius, in.
S = tire slip ratio, nondimensional
ÇSi = brake piston i stroking rate, in./s
T = brake torque, lb-in.
Vij = � uid velocity between pistons i and j, in./s
v = aircraft ground speed, in./s
W = aircraft weight per wheel, lb
xr = rotor lateral displacement, in.
xs = stator lateral displacement, in.
yaxle = axle fore– aft bending, in.
ylug = lug fore– aft de� ection, in.
u = angle (integration variable), rad
us = piston-housing torsional rotation, rad
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Fig. 1 Typical two-axle gear con� guration.

mbrk = brake-material friction coef� cient, nondimensional
mgrd = ground-friction coef� cient, nondimensional
mph = piston-housing bushing-friction coef� cient,

nondimensional
m r = rotor– wheel key friction coef� cient, nondimensional
m s = stator– spline friction coef� cient, nondimensional
faxle = axle bending rotation, rad
fr = rotor yaw rotation, rad
fs = stator yaw rotation, rad
Vw = wheel rotation, rad/s

I. Introduction

A TYPICAL aircraft landing-gear braking system and its
components are shown in Fig. 1. The brake assembly con-

sists of a torque tube, rotors, stators, piston housing, brake rod,
and hydraulic system. The brake is activated by hydraulic pres-
sure causing the pistons to push against the � rst stator, which
compresses the heat stack (rotors and stators). Friction between
the rotors and stators dissipates the kinetic energy as heat.
Rotors are connected to the wheels by beam keys that are
inserted into slots on the rotor outer radius. Stators are � tted
over torque-tube splines by slots on the stator inner radius.
The brake torque is transmitted from the torque tube and pis-
ton-housing arm through the brake rod to the landing-gear
structure.

In recent years, the use of carbon brakes on large civilian
aircraft has increased largely as a result of the superior per-
formance of carbon over traditional materials. In addition to
offering considerable weight savings when compared with
steel, carbon has a higher friction coef� cient, a higher speci� c
heat, and a better wear rate. However, it is also known that
carbon brakes are prone to vibrate.

A. Brake Vibration Categories

Braking-system vibrations are generally categorized as gear
walk, whirl, squeal, chatter, or rotor-cycloidal motion. Gear
walk is the low-frequency (5– 20 Hz) fore– aft motion of the
landing-gear assembly. This motion is caused by tire– runway
interface friction loads that de� ect the landing gear. It may
sometimes be induced by the antiskid system, and could cause
passenger discomfort.

Whirl is the wobbling motion of the brake’s rotating parts
against its stationary parts. It usually occurs at high ground
speed with frequencies in the 200– 400-Hz range. This mode
is highly destructive and could cause carbon chipping or crack-

ing, piston-housing ovalization, fracture of inserts, and heat-
shield damage. Whirl is caused by the high-friction coef� cient
of the brake material and can be detected by the phasing of
pressure oscillations among adjacent pistons. A common rem-
edy for whirl is to insert ori� ces between pistons or � uid
blocks in the hydraulic passageways.

Rotor-cycloidal motion is the radial and rotational motion of
the heat stack coupled with stack-axial breathing motion. It
usually occurs at low brake pressure when wear lip formations
have developed. It can be prevented by introducing grooves
on the stators at the rotor i.d. and on the rotors at the stator
o.d.

Chatter is characterized by torsional oscillations of the
wheel and rotating brake parts about the axle restrained by the
elasticity of the tire. The chatter frequency is typically between
50 and 100 Hz and can be coupled with squeal modes.

Squeal can be de� ned as the torsional oscillations of the
nonrotating brake components about the axle. The squeal
modes have a frequency spectrum of 100– 10,000 Hz and are
caused by the characteristics of the brake-friction material.
Squeal can produce very high oscillatory loads on the landing
gear and brake structure and can sometimes cause brake fail-
ure. Possible solutions are to add damping at appropriate lo-
cations, change the brake-friction material properties, and
modify component stiffnesses or geometry.

B. Primary Squeal-Mode Description

Flight-test data (Fig. 2) have shown that two primary squeal
modes are responsible for producing the high-amplitude oscil-
latory loads in main landing-gear components occasionally en-
countered during landing and taxiing. The lower-frequency
mode has the axles and brakes vibrating in-phase in the 140 –

160-Hz range. This mode is signi� cant because the dynamic
loads are additive on the center lug that is the attachment point
for the two brake rods on each side of the truck to the lower
oleo. The higher-frequency mode is characterized by the axles
and brakes vibrating out of phase in the 180– 250-Hz range.
For this mode, the dynamic loads are subtractive on the center
lug. Typically, the out-of-phase mode is predominant, although
both have been encountered. Other squeal modes can exist,
either singly or in combinations, depending on the system-
parameter values. The following are some phenomena ob-
served during testing:

1) Vibration occurs erratically and is not repeatable.
2) Vibration can occur at all taxiing and landing speeds.
3) Vibration usually occurs at low hydraulic pressures.
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Fig. 2 Flight-test rod load vs squeal frequency.

4) Vibration characteristics are affected by brake structural
design.

The � rst observation suggests that the vibration is related to
the friction-material properties, whereas the remaining obser-
vations are related to the mechanical properties of the brake
system.

C. Analysis of Squeal Vibrations

Analyses of squeal phenomena have used one of four gen-
eral mechanisms for friction-induced system instability: 1)
stick-slip, 2) variable dynamic-friction coef� cient, 3) Sprag-
slip, and 4) geometric coupling. The � rst two approaches rely
on changes in the friction coef� cient with relative sliding speed
to affect system stability. The latter two approaches utilize kin-
ematic constraints and modal coupling to develop the squeal
instability when the friction coef� cient is constant.

Stick-slip is a low sliding-speed phenomenon caused by the
static-friction coef� cient being higher than the dynamic coef-
� cient. The variable dynamic-friction coef� cient approach re-
lies on a negative slope of the friction coef� cient vs sliding-
speed relationship to cause the self-excited instability. Earles
and Soar1 discussed these four types of friction-induced insta-
bilities and presented an experimental and analytical study of
squeal in pin– disk-type brakes. Their analytical model in-
cluded simple single-degree-of-freedom models for the trans-
lation and torsional freedoms to investigate coupling effects.
Their torsional model included nonlinear damping effects in
the torsional freedom.

Ibrahim2,3 presented a comprehensive literature review of the
mechanics of friction-induced vibrations including chatter and
squeal. Tworzydlo et al.4 also presented a review of work in
this � eld.

Millner5 presented an analysis of disk-brake squeal that uti-
lized a linear model having modal coupling between a single
pad and disk to produce instability for a constant friction co-
ef� cient. Millner’s results showed that system stability was
affected primarily by changes in the friction coef� cient, the
Young’s modulus of the pad material, caliper stiffness, and
geometry.

D. Aircraft Squeal-Analysis Methods

The brake-friction coef� cient is a poorly de� ned, highly
nonlinear time-dependent function of pressure, temperature,
relative velocity of the friction surfaces, etc. A common ap-
proach for analyzing squeal vibration on aircraft brakes is to
use the concept of negative damping as the fundamental de-
stabilizing mechanism. Equation (1) is a typical example of a
single-degree-of-freedom model utilizing negative damping to
simulate the primary brake-squeal mode

¨ ÇI u 1 C u 1 K u = 2Nm A P r (1)u u u brk p net eff

u is the torsional rotation of the brake stationary parts about
the axle, and dots over symbols indicate differentiation with
respect to time t. Iu, Cu, and Ku are the inertia, damping, and
stiffness of the brake stationary parts about the axle, respec-
tively. Cu is an equivalent viscous-damping coef� cient repre-
senting the Coulomb friction at the piston-housing bushings.
Ku is the torsional stiffness about the axle caused by the brake
rod. Ku = Krod, where Re is the distance from the axle cen-2Re

terline to the brake-rod’s axis, and Ap is the net piston area.
The linearized friction coef� cient about a point m0 has the

functional form

Çm = m 2 m (V 2 u) (2)brk 0 nd w

where Vw is the rotational speed of the wheel and is assumed
to be constant. m0 and mnd are positive quantities. Forming the
characteristic equation and examining its roots shows that the
real part of the eigenvalue is (2Cu 1 2NmndApPnetreff)/2Iu.
When this quantity becomes positive, the system is unstable.

The phenomenon of friction coef� cient varying with relative
velocity has been observed in some materials, and this ap-
proach has been widely used in analyzing brake squeal. How-
ever, there are several major de� ciencies with this approach
when analyzing aircraft carbon brakes. Firstly, no data indicate
that the brake-friction coef� cient has a strong functional de-
pendence on relative speed between the rotor and stator contact
surfaces. In fact, test data show that during a squeal-vibration
event the brake-friction coef� cient is essentially a constant.
Secondly, model predictions using brake negative damping do
not agree with test results. For example, test data indicate that
braking system dynamic stability increases with increasing
brake hydraulic pressure. Models using negative damping pre-
dict the opposite trend, showing decreased stability with in-
creasing pressure. Test data also have a bell-shaped distribution
with squeal frequency as shown in Fig. 2. The frequencies of
unstable modes predicted by models using negative damping
essentially do not vary with changing pressure, friction coef-
� cient, etc. Thus, the goal of this paper is to develop a realistic
model that does not have these de� ciencies and that agrees
with the experimental observations described previously.

II. Model Description
For a single-wheel model, the degrees of freedom are rigid-

body lateral displacement and yaw of the rotor and stator (xr,
fr and xs, fs, respectively); us; yaxle; faxle; and Vw.

For the fore– aft wheel-pair model, the single-wheel free-
doms are included for each wheel plus the fore– aft de� ection
of the center lug ylug on the landing gear lower oleo strut.

Additional degrees of freedom required for the brake-hy-
draulic equations, which are presented in Appendix A, are the
piston pressure pi at each piston, the � uid velocity vij between



626 LIU, GORDON, AND ÖZBEK

Fig. 3 Degrees of freedom.

two adjacent piston cavities, and the piston-housing axial de-
� ection xiph at each piston.

A. Assumptions

The coef� cient mbrk is assumed to be a constant when squeal
vibrations occur. For simplicity, the multistage brake is rep-
resented by a single rotor and stator. It is assumed that the
rotor and stator friction surfaces are always in contact. How-
ever, the validity of the model is not restricted to these as-
sumptions.

The relative displacement between the rotor and stator is
assumed to be a function of rotor and stator rigid-body lateral
translation and yaw. The normal contact force at the rotor and
stator interface is represented by a cubic polynomial in the
relative displacement and velocity between the rotor and stator
in compression. The nonlinear relationship between load and
de� ection have been veri� ed by static tests conducted on com-
plete brake heat-stack assemblies and small-scale coupons.

The brake-rod axial load is assumed to be a function of the
piston-housing torsional and yaw rotations plus the axle- and
center-lug fore– aft de� ections.

B. Nonlinear Contact Stress

Assume that the nonlinear normal stress acting at theF̂n

interface surface between a rotor and stator can be expressed
as a polynomial in the relative displacement and velocity
normal to the friction surface. Then F̂n is given by

m

i iF̂ = [K x 1 C xÇ ] (3)n i iO
i=0

where, x and xÇ are the relative displacement and velocity be-
tween the rotor and stator, respectively, i is an integer between
0 and m, and m > 1.

The tangential stress generated by the brake-friction ma-F̂t

terial is

ˆ ˆF = m F (4)t brk n

Consider the schematic representation of a four-wheel,
main-landing gear truck shown in Fig. 3. Each wheel and
brake are modeled as a single rotor and stator having the fol-
lowing degrees of freedom: Rigid-body lateral displacement

and yaw of the stator and rotor (xs, fs and xr, fr, respectively);
us; and Vw.

For any point (r, u) on the disk surface, the normal displace-
ment and velocity are

x(r, u ) = (x 2 x ) 2 r sin u(f 2 f ) (5)s r s r

Ç ÇxÇ(r, u ) = (xÇ 2 xÇ ) 2 r sin u(f 2 f ) (6)s r s r

The normal force Fn from the normal contact stress is

2p Ro

ˆF = F r dr du (7)n nE E
0 Ri

and the tangential force Ft generated by the brake-friction ma-
terial is

F = m F (8)t brk n

The brake torque T is

2p Ro

2ˆÇT = sgn(V 2 u ) m F r dr du (9)w s brk nE E
0 Ri

The yawing moment Mb as a result of normal contact stress is

2p Ro

2ˆM = 2 F r sin u dr du (10)b nE E
0 Ri

Assume that the nonlinear contact stress in Eq. (3) isF̂n

represented by a cubic polynomial in the relative displacement
only, i.e., m = 3. Then, substituting the expression for x(r, u )
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from Eq. (5) into the expressions for Fn, T, and Mb in Eqs. (7),
(9), and (10), yields

1 2–F = K A 1 K A (x 2 x ) 1 A (f 2 f ) [Kn 0 2 1 2 s r 4 4 s r 2

21 3K (x 2 x )] 1 A (x 2 x ) [K 1 K (x 2 x )] (11)3 s r 2 s r 2 3 s r

1 1– –M = 2A (f 2 f )[ K 1 K (x 2 x )]b 4 s r 4 1 2 2 s r

3 2 1 3– –2 K A (x 2 x ) (f 2 f ) 2 K A (f 2 f ) (12)4 3 4 s r s r 8 3 6 s r

2Ç –T = sgn(V 2 u ){ m A [K 1 K (x 2 x )]w s 3 brk 3 0 1 s r

2 2–1 m A (x 2 x ) [K 1 K (x 2 x )]3 brk 3 3 r 2 3 s r

1 2–1 m A (f 2 f ) [K 1 3K (x 2 x )]} (13)5 brk 5 s r 2 3 s r

where

k kA = p (R 2 R ), k = 2, 3, 4, 5, 6 (14)k o i

If the nonlinear contact stress in Eq. (3) is representedF̂n

by a cubic polynomial function of both the normal displace-
ment x(r, u) and velocity xÇ(r, u ), then additional terms will
appear in the expressions for Fn, T, and Mb that are functions
of the velocity variables (xÇs, , xÇr, and and the coef� cientsÇ Çf f )s r

Ci. These velocity variable terms will have the same functional
forms as the displacement variable terms shown in Eqs.
(11– 13).

C. Brake Hydraulic Force

The brake net hydraulic force, which is determined by the
net hydraulic pressure and the net piston area, is given by

F = P A (15)hyd net p

D. Brake-Rod Load

The brake-rod axial load Frod is a function of us, fs, yaxle,
and ylug. Frod is given by

K (y 2 y )K u K d f u axle lugu s u e s
F = 2 1 (16)rod 2 2R R Re e e

E. Slip Ratio

The tire slip ratio S is a function of v, yÇaxle, and Vw. It is
de� ned to be

[(v 2 yÇ ) 2 V R ]axle w rS = (17)
(v 2 yÇ )axle

When VwRr equals the net axle velocity (v 2 yÇaxle), S is zero.
When Vw equals zero, S = 1.0, which corresponds to 100%
slip, the wheel is locked, and the tire skids.

F. Tire– Ground Drag Force

The tire– ground drag force is a function of W, S, and mgrd,
which is a nonlinear function of S. The drag force is given by

F = Wm (18)drag grd

mgrd is an antisymmetric function of S.

m (2S) = 2m (S ) (19)grd grd

G. Equations of Motion

The nonlinear-squeal equations of motion for a single brake
are expressed in terms of the degrees of freedom xs, fs, xr, fr,
us, yaxle, faxle, ylug, and Vw. The center-lug fore– aft de� ection
can be retained or neglected as desired.

The equations of motion are given in Eqs. (20– 28). For the
fore– aft wheel-pair model, the single-wheel degrees of free-
dom are included for each wheel plus the fore– aft de� ection

of the center lug ylug on the landing-gear lower oleo strut, and
the brake-rod loads from the fore and aft wheels. Equations of
motion for models that include a � exible torque tube are pre-
sented in Appendix B

m ẍ 1 C xÇ 1 m uF u sgn(xÇ ) = F 2 F (20)s s xs s s rod s hyd n

¨ ÇI f 1 C f 1 K f 2 F d = 1M (21)fs s fs s fs s rod e b

¨ Ç ÇI u 1 C u 1 F R 1 m uF uR sgn(u ) = T (22)u s u s rod e ph rod b s

m ẍ 1 C xÇ 1 m (uT u/R )sgn(xÇ ) 1 K x = F (23)r r xr r r w r rr r n

¨ Ç ÇI f 1 (C 1 C )f 2 C f 1 K ffr r fr wk r wk axle fr r

1 K (f 2 f ) = 2M (24)wk r axle b

m ÿ 1 C yÇ 1 K y 1 K f = F 2 Faxle axle yax axle 11 axle 12 axle drag rod

(25)

¨ Ç ÇI f 1 (C 1 C )f 2 C f 1 K y 1 K faxle axle f ax wk axle wk r 21 axle 22 axle

2 K (f 2 f ) = 0 (26)wk r axle

ÇI V = 2T 1 F R (27)w w drag r

m ÿ 1 C yÇ 1 K y 2 F = 0 (28)lug lug lug lug lug lug rodO
III. Coupling Mechanisms

The nonlinear contact stiffness of the brake heat-stack cou-
ples rotor and stator-rigid-body freedoms through the normal
force, yaw moment, and torque, which are functions of the
heat-stack relative displacement. It can be seen in Eqs. (11– 13)
that no coupling from Fn, Mb, and T would occur between the
lateral displacement and yaw freedoms of the heat stack if the
contact-stress relationship were linear, i.e., K2 = K3 = 0. These
terms appear in the equations of motion (20– 24) and (27).

The contact-stiffness and brake-friction terms (which are
functions of rotor/stator lateral translation and yaw) are asym-
metric in the linearized perturbation equations (given in Sec.
IV) for an equilibrium point of the nonlinear system. This
asymmetry gives rise to potential instabilities associated with
these four degrees of freedom.

The geometry of the brake and landing-gear structure cou-
ples additional degrees of freedom, including, piston-housing
torsional rotation, axle and center-lug fore– aft de� ections, and
heat-stack lateral translation and yaw caused by the brake-rod
load terms in the equations of motion (20– 22), (25), and (28).
Additional coupling arises from the ground-drag force caused
by tire slip at a low-slip ratio when the torque gain is positive.
These two mechanisms and the coupling induced by the brake-
friction material nonlinearities provide a complete feedback
loop to the system.

It is the combination of the different coupling mechanisms
that permits instability of the primary squeal mode. Both the
geometric and asymmetric coupling, because of the brake-rod
structural terms and the nonlinear contact-stress terms, respec-
tively, must be present to produce the squeal-mode instability.
Either of these coupling mechanisms alone is insuf� cient to
adequately describe the primary-mode squeal phenomenon be-
ing modeled.

IV. Solution Methodology
The nonlinear squeal equations (20– 28) have the form

[M ]{ẍ} 1 [C]{xÇ } 1 [K ]{x} = {F } 1 {F }hyd damp

1 {F } 1 {F } (29)disk drag
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Fig. 4 Stability as a function of Pnet and mbrk.

where {x} is a vector of the time-dependent variables (degrees
of freedom), [M ] is the inertia matrix, [C] is the viscous damp-
ing matrix, and [K ] is the structural stiffness matrix. [K ] in-
cludes stiffness effects of all brake and landing-gear compo-
nents excluding the brake-rotor and stator stiffnesses that are
speci� ed in {Fdisk}. The vector {Fdisk} contains nonlinear con-
tact stiffness terms caused by the relative displacements be-
tween brake rotors and stators. {Fhyd} is a vector of piston-
hydraulic pressure terms. {Fdamp} is a vector of nonlinear
damping terms because of Coulomb friction. {Fdrag} is a vector
of terms because of the tire– ground drag load

T{x} = {x f u x f y f V y } (30)s s s r r axle axle w lug

T{F } = {F 0 0 0 0 0 0 0 0} (31)hyd hyd

T{F } = {0 0 0 0 0 F 0 R F 0} (32)drag drag r drag

T{F } = {2F M T F 2 M 0 0 2 T 0} (33)disk n b n b

2m uF u sgn(xÇ )s rod s

0
Ç2m uF uR sgn(u )ph rod b s

uT u
2m sgn(xÇ )r r

Rw{F } = (34)damp

0
0
0
0
0

Fn, Mb, and T are given by Eqs. (11– 13), respectively. Fhyd,
Frod, and Fdrag are given by Eqs. (15), (16), and (18), respec-
tively.

A. Steady-State Operating Point

For a given net-brake hydraulic pressure Pnet, at equilibrium
conditions, i.e., smooth sliding, the nonlinear equations satisfy
the following conditions:

[K ]{x } = {F } 1 {F (x )} (35)0 hyd disk 0

There can be more than one steady-state operating point at a
given brake pressure because the squeal equations are nonlin-
ear.

B. Stability Analysis

The � rst step in the solution procedure is to obtain the
steady-state operating point for the full set of nonlinear squeal
equations [Eq. (29)] by solving for the equilibrium point {x0}
in Eq. (35). There will be one or more operating points for the
nonlinear systems being considered here. Stability of the sys-
tem is investigated about each steady-state operating point by
assuming small perturbations {x̄} about the equilibrium point
{x0}, where

{x} = {x } 1 {x̄} (36)0

T{x } = {x f u x f y f V y } (37)0 s s s r r axle axle w lug 0

T T¯ ¯ ¯ ¯¯{x̄} = {x̄ f u x̄ f ȳ f V ȳ } (38)s s s r r axle axle w lug

Nonlinear damping terms caused by Coulomb friction in the
piston-housing bushings are replaced by equivalent viscous
damping in Eq. (29).

Substitution of Eq. (36) for small perturbations about the
equilibrium point into the nonlinear squeal equations [Eq. (29)]

and neglecting higher-order terms gives the linearized squeal
equations of motion

¨ Ç[M ]{x̄} 1 [C]{x̄} 1 [K ]({x̄} 1 {x }) = {F } 1 {F (x )}0 hyd disk 0

1 {F (x̄)} 1 {F (x )} 1 {F (x̄)} (39)disk drag 0 drag

The force Fn, yaw moment Mb, and brake torque T because
of normal contact stress are expressed in terms of both the
equilibrium position {x0} and the perturbation variables {x̄},
where

F (x) = F (x ) 1 F (x̄) (40)n n 0 n

M (x) = M (x ) 1 M (x̄) (41)b b 0 b

T(x) = T(x ) 1 T(x̄ ) (42)0

1 ¯ ¯–F (x̄ ) = [K A 1 2K A B ](x̄ 2 x̄ ) 1 K A B (f 2 f )n 1 2 2 2 x s r 2 2 4 f s r

2 3 2–1 K (x̄ 2 x̄ )[3A B 1 A B ]3 s r 2 x 4 4 f

3 ¯ ¯–1 A K B B (f 2 f ) 1 ? ? ? (43)2 4 3 x f s r

1 1 ¯ ¯– –M (x̄) = 2[ K A 1 K A B ](f 2 f )b 4 1 4 2 2 4 x s r

1 3 3 2 ¯ ¯– – –2 A B [ K 1 K B ](x̄ 2 x̄ ) 2 K A B (f 2 f )4 f 2 2 2 3 x s r 4 3 4 x s r

3 2 ¯ ¯–2 K A B (f 2 f ) 1 ?? ? (44)8 3 6 f s r

2–T(x̄ ) = m A [K 1 2K B ](x̄ 2 x̄ )3 brk 3 1 2 x s r

2 ¯ ¯–1 m K A B (f 2 f ) 1 m K (x̄ 2 x̄ )5 brk 2 5 f s r brk 3 s r

2 3 2 6 ¯ ¯– –3 [2A B 1 A B ] 1 m K A B B (f 2 f ) 1 ?? ?3 x 5 5 f 5 brk 3 5 x f s r

(45)

k kA = p (R 2 R ), k = 2, 3, 4, 5, 6 (46)k o i

B = x 2 x (47)x s0 r0

B = f 2 f (48)f s0 r0

Note that constant terms proportional to K0 or C0 do not appear
in Eqs. (43) or (45). They only enter into the steady-state op-
erating point expressions for Fn(x0) and T(x0) given in Eqs.
(11) and (13), respectively.

Stability analyses (eigensolutions) have been performed on
the linearized squeal equations [Eqs. (39– 48)] for small per-
turbations about an operating point of the nonlinear system.
Results from these analyses are presented in a companion pa-
per.6 System instability is obtained for certain combinations of
mbrk and Pnet, typically with high values of mbrk and low levels
of Pnet. In general, the nonlinear contact-stiffness model pre-
dicts system instability at low-braking pressures and stability
at high-braking pressures. Analysis results indicate that system
instability can occur with a constant friction coef� cient as has
been observed frequently on both dynamometer and airplane
tests. In general, stability decreases with increasing brake-fric-
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tion coef� cient. Typically, the system is stable at low values
of mbrk and unstable at high values.

A typical stability plot as a function of Pnet and mbrk is shown
in Fig. 4. In this � gure only the positive real part of the most
unstable root is plotted. It is evident that stability, in general,
is reduced by increasing friction coef� cient and decreasing
pressure.

C. Nonlinear Transient Analysis

Time-history response solutions have been obtained using a
fourth-order Runge– Kutta algorithm to integrate the nonlinear
squeal equations [Eqs. (20– 28)]. Results from these analyses
are also presented in a companion paper.6 The response his-
tories have been computed to complement the eigensolution
results, evaluate stability of the nonlinear system near the op-
erating points, evaluate stability of limit cycles and strange
attractors, and determine response amplitudes, e.g., rod loads,
accelerations, etc.

V. Summary and Conclusions
A model has been presented for the analysis of primary

squeal-mode vibration in aircraft brake systems. The destabi-
lizing mechanism in the model utilized mechanical and ma-
terial surface properties of the brake heat stack to couple lateral
translation and yaw of the rotors and stators. Geometric and
stiffness properties of the brake and landing-gear structure cou-
ple piston-housing torsional rotation and axle fore– aft bending
with lateral translation and twist of the heat stack.

The model does not use brake-negative damping and pre-
dicts that system instability can occur with a constant brake-
friction coef� cient as has been observed on both dynamometer
and airplane tests. System stability can be altered by changes
in the brake-friction coef� cient, pressure, stiffness, geometry,
and various brake-design parameters. Enhanced versions of the
model were presented that include more detailed structural rep-
resentation of the piston-housing torque tube and the hydrau-
lic-� ow equations for each piston. The model was extended to
a fore– aft wheel pair on a two-axle, main-landing-gear truck.

Appendix A: Brake Hydraulic Equations
Continuity

ÇpÇ = (B /V )(A V 2 A V 2 A S ) (A1)i i i L,i21,i i2 1,i L,i,i1 1 i,i11 p,i i

where

i = 1, . . . 7 (A2)

V = V (A3)67 60

Ori� ce

2rAL,i,i1 1 Çp 2 p = V uV u 1 rL V (A4)i i11 i,i1 1 i,i1 1 i,i1 1 i,i1 122(C A )D 0,i,i1 1

Continuity at Inlet

Q 1 A V = A V (A5)0 L0 60 L0 01

2rAL0 Çp 2 p = V uV u 1 rL V (A6)0 1 01 01 01 0122(C A )D 0,01

2rAL0 Çp 2 p = V uV u 1 rL V (A7)6 0 60 60 60 6022(C A )D 0,60

ÇÇS = xÇ 1 f r sin u 2 xÇ (A8)i s s p i ph

6

F = p A (A9)hyd i pO
i=1

6

M = p A r sin u (A10)hyd i p p iO
i=1

Viscosity Effects

2Dp = f (L /D)(r/2)V (A11)

where

0.25f = C /N (A12)f R

mdN = VD/n = (A13)R
r

Hence

1.25 1.75Dp = (rC L /2D )V (A14)f

Appendix B: Torque-Tube/Axle Models
The equations of motion for the torque-tube model are given

by

[M ]{ẍ } 1 [C ]{xÇ } 1 [K ]{x } = {F } (B1)TT TT TT TT TT TT TT

where

T{x } = ë y § y § y § y § y § û (B2)TT 1 1 2 2 3 3 4 4 5 5 TT

2Frod

Mrod

2FPH

2MPH

2FTP{F } = (B3)TT 2MTP

0
Msp

0
Mbt

The {xTT} degrees-of-freedom yi and §i, i = 1, 5, are the
fore– aft de� ection and yaw rotation at the centerline of the
brake rod (node 1); the centerline of the piston-housing bush-
ing (node 2); the centerline of the torque-tube pedestal bushing
(node 3); the c.g. of the heat stack (node 4); and the backing
plate (node 5).

Frod and Mrod are the force and moment exerted on the torque
tube by the brake-rod axial load. FPH, MPH, FTP, and MTP are
the force and moment at the center of the piston-housing and
torque-tube pedestal bushings, respectively. Msp is the moment
caused by the relative bending angle between the torque tube
and the stators. Mbt is the moment caused by the relative bend-
ing angle between the torque tube and the backing plate.

The axle equations of motion are given by

[M ]{ẍ } 1 [C ]{xÇ } 1 [K ]{x } = {F } (B4)axle axle axle axle axle axle axle

where

T{x } = ë y § y § y § û (B5)axle 1 1 2 2 3 3 axle

T{F } = ë F M F M F M û (B6)axle PH PH TP TP drag bk

The {xaxle} degrees-of-freedom yi and §i, i = 1, 3, are the
fore– aft de� ection and yaw rotation at the centerline of the
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piston-housing bushing (node 1); the centerline of the torque-
tube pedestal bushing (node 2); and the wheel centerline (node
3).

Fdrag and Mbk are the tire– ground drag force and the moment
resulting from the relative bending angle between the axle and
rotors. {Fdrag} is a function of tire slip where yÇaxle = yÇ3axle in
Eq. (17) for S.

Frod is given by

F = K R u 2 K d f 1 K (y 2 y 1 y ) (B7)rod rod e s rod e s rod axle lug 1TT

and the rod moment is to be either zero or a function of pin
stiffness Kpin

M = 0 (B8)rod

or

M = K (u 2 § ) (B9)rod pin TT 1rod

FPH, MPH, FTP, and MTP are given by

F = K (y 2 y ) (B10)PH KPH 1axle 2TT

M = K (§ 2 § ) (B11)PH MPH 1axle 2TT

F = K (y 2 y ) (B12)TP FTP 2axle 3TT

M = K (§ 2 § ) (B13)TP MTP 2axle 3TT

Mbt, Mbk, and Msp are given by

M = K (§ 2 f ) (B14)bt bp 5TT 11

10

M = K (§ 2 f ) (B15)bk bk 3axle iO
i=2,4,???

9

M = K (§ 2 f ) (B16)sp sp 4TT iO
i=1,3,???

where xi and fi are the heat-stack axial displacement and yaw
angle, respectively, and i = 1 (pressure plate), i = 2 (rotor 1),
i = 3 (stator 1), i = 4 (rotor 2), and i = 11 (backing plate).
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