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Nonlinear Model for Aircraft Brake Squeal Analysis:
Model Description and Solution Methodology
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A model is presented for the analysis of primary squeal-mode vibration in aircraft braking systems.
The destabilizing mechanism in the model utilizes nonlinear mechanical and material surface properties
of the brake heat stack to couple lateral translation and yaw of the rotors and stators. Geometric and
stiffness properties of the brake and landing-gear structure couple piston-housing torsional rotation and
axle fore-aft bending with lateral translation and yaw of the heat stack. The model does not use brake
negative damping and it predicts that system instability can occur with a constant brake-friction coeffi-
cient as has been observed on both dynamometer and flight tests. System stability can be altered by
changes in the brake-friction coefficient, pressure, stiffness, geometry, and various brake-design param-
eters. Enhanced versions of the model are presented that include a more detailed structural representation
of the piston-housing torque tube and the hydraulic flow equations for each piston. The model is extended
to a fore-aft wheel pair on a two-axle, main-landing gear truck. Stability is investigated by determining
eigenvalues of the linearized perturbation equations about each steady-state operating point of the non-
linear system. The nonlinear dynamic equations are integrated numerically to obtain time-history re-
sponses. Results from stability analyses and parametric studies using this model are presented in a com-
panion paper.

Nomenclature K,. = lateral stiffness of rotor (caused by backing plate),
A, = m(RE—RH k=2,3,4,5,6, (in) Ib/in./rad .
B, = (xy — X,o), in. K, = yaw stiffness of wheel key, 1b-in./rad
B, = (b, — b0, rad K, = piston-housi_ng torsional stiffness, lb.-in‘/rad
C.e = lug fore-aft damping coefficient, Ib/in./s K, = rotor yaw stiffness (caused by backing plate),
C.« = wheel key yaw damping, lb-in./rad/s Ib-in./rad )
C,, = rotor lateral translational damping, 1b/in./s K,, = stator yaw stiffness, Ib-in./rad
C,, = stator lateral translational damping, 1b/in./s Ky = axle-bending y — y stiffness, Ib/in.
C,.« = axle fore-aft deflection-damping coefficient, 1b/in./s Ky, = axle-bending y — & stiffness, Ib/rad
C, = piston-housing torsional damping, 1b-in./rad/s K> = axle-bending y — & stiffness, K5, Ib/rad
Cyax = axle-bending rotation-damping coefficient, K> = axle-bending & — & stiffness, Ib-in./rad
Ib-in./rad/s M, = yaw moment, lb-in.
C,, = rotor yaw viscous damping, 1b-in./rad/s Mae = axle mass, lb-s7in. 5.
C,, = stator yaw viscous damping, 1b-in./rad/s Mg = center-lug mass, Ib-s7/in.
d. = brake-rod lateral offset, in. m, = rotor mass, Ib-s éln
F4ue = tire-ground drag load, 1b m, = stator mass, Ib-s7/in. ) )
Fia = lateral force (brake pressure), Ib N = number of brake stages, nondlmpnglonal
F, = rotor/stator contact force, 1b P.. = net-brake hydraulic pressure, 1b/in.
F, = rotor/stator contact stress, Ib/in.> p: = hydraulic pressure at piston i, 1b/in.?
Fra = brake-rod axial load, 1b Po = %nlet pressure, Ib/in.
F, = tangential force, 1b Qo = inlet flow, in"/s o
E, = tangential stress, 1b/in.> R, = p¥st0n-h0usmg bushing rad1u§, in.
I = axle moment of inertia, Ib-in.-s* R. = distance axle to brake-rod axis, in.
I, = wheel inertia, Ib-in.-s> R; = friction surface inner radius, in.
I, = stator polar moment of inertia, 1b-in.-s> R, = fr1cF1on su{face outer .radlus, 1.
I,, = yaw polar moment of inertia, Ib-in.-s R, = rolling radius of tire, in.
I,, = yaw polar moment of inertia, Ib-in.-s R, = wh@el rgdlus, m. ) )
K., = center-lug fore-aft stiffness, 1b/in. r = ra.du.ls (1ntegr2_1t10n Varl_able), m.
K., = brake-rod axial stiffness, Ib/.in. Tegr = f_rlctlo_n-maFerlal eff.ectlve. radius, in.
N = tire slip ratio, nondimensional
- S; = brake piston i stroking rate, in./s
Presented as Paper 96-1251 at the AIAA Dynamic Specialist Con- T = brake torque, lb-in.
ference, Salt Lake City, UT, April 18-19, 1996; received July 29, V, = fluid velocity between pistons i and j, in./s
1996; revision r(?ceived Jan. 26, 1998; agcepted for publicat}on Jan. v = aircraft ground speed, in./s
26, 19981 Copynght © 1998 by T.he Boeing Compgny. Publls.hed by W = aircraft weight per wheel, Ib
the American Institute of Aeronautics and Astronautics, Inc., with per- _ . .
mission. X, = rotor lateral d1§placement, in.
*Principal Engineer, Structures Vibration Technology. Xs = stator lateral dlspla.cem.ent, 1.
tSenior Principal Engineer, Structures Vibration Technology. Se- Yate = axle fore-aft bending, in.
nior Member AIAA. Ywe = lug fore-aft deflection, in.
iSenior Specialist Engineer, Structures Vibration Technology. E- 0 = angle (integration variable), rad
mail: akif.ozbek@boeing.com. Member ATAA. 0, = piston-housing torsional rotation, rad
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Mok = brake-material friction coefficient, nondimensional

Mea = ground-friction coefficient, nondimensional

Mpn = piston-housing bushing-friction coefficient,
nondimensional

w, = rotor-wheel key friction coefficient, nondimensional

W = stator-spline friction coefficient, nondimensional

bae = axle bending rotation, rad

&, = rotor yaw rotation, rad

¢, = stator yaw rotation, rad

Q,, = wheel rotation, rad/s

I. Introduction

A TYPICAL aircraft landing-gear braking system and its
components are shown in Fig. 1. The brake assembly con-
sists of a torque tube, rotors, stators, piston housing, brake rod,
and hydraulic system. The brake is activated by hydraulic pres-
sure causing the pistons to push against the first stator, which
compresses the heat stack (rotors and stators). Friction between
the rotors and stators dissipates the kinetic energy as heat.
Rotors are connected to the wheels by beam keys that are
inserted into slots on the rotor outer radius. Stators are fitted
over torque-tube splines by slots on the stator inner radius.
The brake torque is transmitted from the torque tube and pis-
ton-housing arm through the brake rod to the landing-gear
structure.

In recent years, the use of carbon brakes on large civilian
aircraft has increased largely as a result of the superior per-
formance of carbon over traditional materials. In addition to
offering considerable weight savings when compared with
steel, carbon has a higher friction coefficient, a higher specific
heat, and a better wear rate. However, it is also known that
carbon brakes are prone to vibrate.

A. Brake Vibration Categories

Braking-system vibrations are generally categorized as gear
walk, whirl, squeal, chatter, or rotor-cycloidal motion. Gear
walk is the low-frequency (5-20 Hz) fore-aft motion of the
landing-gear assembly. This motion is caused by tire-runway
interface friction loads that deflect the landing gear. It may
sometimes be induced by the antiskid system, and could cause
passenger discomfort.

Whirl is the wobbling motion of the brake’s rotating parts
against its stationary parts. It usually occurs at high ground
speed with frequencies in the 200-400-Hz range. This mode
is highly destructive and could cause carbon chipping or crack-
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ing, piston-housing ovalization, fracture of inserts, and heat-
shield damage. Whirl is caused by the high-friction coefficient
of the brake material and can be detected by the phasing of
pressure oscillations among adjacent pistons. A common rem-
edy for whirl is to insert orifices between pistons or fluid
blocks in the hydraulic passageways.

Rotor-cycloidal motion is the radial and rotational motion of
the heat stack coupled with stack-axial breathing motion. It
usually occurs at low brake pressure when wear lip formations
have developed. It can be prevented by introducing grooves
on the stators at the rotor i.d. and on the rotors at the stator
o.d.

Chatter is characterized by torsional oscillations of the
wheel and rotating brake parts about the axle restrained by the
elasticity of the tire. The chatter frequency is typically between
50 and 100 Hz and can be coupled with squeal modes.

Squeal can be defined as the torsional oscillations of the
nonrotating brake components about the axle. The squeal
modes have a frequency spectrum of 100-10,000 Hz and are
caused by the characteristics of the brake-friction material.
Squeal can produce very high oscillatory loads on the landing
gear and brake structure and can sometimes cause brake fail-
ure. Possible solutions are to add damping at appropriate lo-
cations, change the brake-friction material properties, and
modify component stiffnesses or geometry.

B. Primary Squeal-Mode Description

Flight-test data (Fig. 2) have shown that two primary squeal
modes are responsible for producing the high-amplitude oscil-
latory loads in main landing-gear components occasionally en-
countered during landing and taxiing. The lower-frequency
mode has the axles and brakes vibrating in-phase in the 140-
160-Hz range. This mode is significant because the dynamic
loads are additive on the center lug that is the attachment point
for the two brake rods on each side of the truck to the lower
oleo. The higher-frequency mode is characterized by the axles
and brakes vibrating out of phase in the 180-250-Hz range.
For this mode, the dynamic loads are subtractive on the center
lug. Typically, the out-of-phase mode is predominant, although
both have been encountered. Other squeal modes can exist,
either singly or in combinations, depending on the system-
parameter values. The following are some phenomena ob-
served during testing:

1) Vibration occurs erratically and is not repeatable.

2) Vibration can occur at all taxiing and landing speeds.

3) Vibration usually occurs at low hydraulic pressures.
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Fig. 1 Typical two-axle gear configuration.
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Fig. 2 Flight-test rod load vs squeal frequency.

4) Vibration characteristics are affected by brake structural
design.

The first observation suggests that the vibration is related to
the friction-material properties, whereas the remaining obser-
vations are related to the mechanical properties of the brake
system.

C. Analysis of Squeal Vibrations

Analyses of squeal phenomena have used one of four gen-
eral mechanisms for friction-induced system instability: 1)
stick-slip, 2) variable dynamic-friction coefficient, 3) Sprag-
slip, and 4) geometric coupling. The first two approaches rely
on changes in the friction coefficient with relative sliding speed
to affect system stability. The latter two approaches utilize kin-
ematic constraints and modal coupling to develop the squeal
instability when the friction coefficient is constant.

Stick-slip is a low sliding-speed phenomenon caused by the
static-friction coefficient being higher than the dynamic coef-
ficient. The variable dynamic-friction coefficient approach re-
lies on a negative slope of the friction coefficient vs sliding-
speed relationship to cause the self-excited instability. Earles
and Soar' discussed these four types of friction-induced insta-
bilities and presented an experimental and analytical study of
squeal in pin-disk-type brakes. Their analytical model in-
cluded simple single-degree-of-freedom models for the trans-
lation and torsional freedoms to investigate coupling effects.
Their torsional model included nonlinear damping effects in
the torsional freedom.

Ibrahim™ presented a comprehensive literature review of the
mechanics of friction-induced vibrations including chatter and
squeal. Tworzydlo et al.* also presented a review of work in
this field.

Millner’ presented an analysis of disk-brake squeal that uti-
lized a linear model having modal coupling between a single
pad and disk to produce instability for a constant friction co-
efficient. Millner’s results showed that system stability was
affected primarily by changes in the friction coefficient, the
Young’s modulus of the pad material, caliper stiffness, and
geometry.

D. Aircraft Squeal-Analysis Methods

The brake-friction coefficient is a poorly defined, highly
nonlinear time-dependent function of pressure, temperature,
relative velocity of the friction surfaces, etc. A common ap-
proach for analyzing squeal vibration on aircraft brakes is to
use the concept of negative damping as the fundamental de-
stabilizing mechanism. Equation (1) is a typical example of a
single-degree-of-freedom model utilizing negative damping to
simulate the primary brake-squeal mode

106 + CUG + K0 = ZNMbrkAanctrcff (1

0 is the torsional rotation of the brake stationary parts about
the axle, and dots over symbols indicate differentiation with
respect to time t. I, Cy, and K, are the inertia, damping, and
stiffness of the brake stationary parts about the axle, respec-
tively. C, is an equivalent viscous-damping coefficient repre-
senting the Coulomb friction at the piston-housing bushings.
K, is the torsional stiffness about the axle caused by the brake
rod. K, = RiKmd, where R, is the distance from the axle cen-
terline to the brake-rod’s axis, and A, is the net piston area.

The linearized friction coefficient about a point o has the
functional form

Mok = Mo — P«m(Qw - 0) (2)
where Q,, is the rotational speed of the wheel and is assumed
to be constant. o and w.g are positive quantities. Forming the
characteristic equation and examining its roots shows that the
real part of the eigenvalue is (—Cy + 2NWniA, Pueiterc)/21,.
When this quantity becomes positive, the system is unstable.

The phenomenon of friction coefficient varying with relative
velocity has been observed in some materials, and this ap-
proach has been widely used in analyzing brake squeal. How-
ever, there are several major deficiencies with this approach
when analyzing aircraft carbon brakes. Firstly, no data indicate
that the brake-friction coefficient has a strong functional de-
pendence on relative speed between the rotor and stator contact
surfaces. In fact, test data show that during a squeal-vibration
event the brake-friction coefficient is essentially a constant.
Secondly, model predictions using brake negative damping do
not agree with test results. For example, test data indicate that
braking system dynamic stability increases with increasing
brake hydraulic pressure. Models using negative damping pre-
dict the opposite trend, showing decreased stability with in-
creasing pressure. Test data also have a bell-shaped distribution
with squeal frequency as shown in Fig. 2. The frequencies of
unstable modes predicted by models using negative damping
essentially do not vary with changing pressure, friction coef-
ficient, etc. Thus, the goal of this paper is to develop a realistic
model that does not have these deficiencies and that agrees
with the experimental observations described previously.

II. Model Description

For a single-wheel model, the degrees of freedom are rigid-
body lateral displacement and yaw of the rotor and stator (x,,
&, and x,, ¢, respectively); 05 Vaue; Gaxe; and Q..

For the fore-aft wheel-pair model, the single-wheel free-
doms are included for each wheel plus the fore-aft deflection
of the center lug y., on the landing gear lower oleo strut.

Additional degrees of freedom required for the brake-hy-
draulic equations, which are presented in Appendix A, are the
piston pressure p; at each piston, the fluid velocity v; between
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two adjacent piston cavities, and the piston-housing axial de-
flection x;,, at each piston.

A. Assumptions

The coefficient L, is assumed to be a constant when squeal
vibrations occur. For simplicity, the multistage brake is rep-
resented by a single rotor and stator. It is assumed that the
rotor and stator friction surfaces are always in contact. How-
ever, the validity of the model is not restricted to these as-
sumptions.

The relative displacement between the rotor and stator is
assumed to be a function of rotor and stator rigid-body lateral
translation and yaw. The normal contact force at the rotor and
stator interface is represented by a cubic polynomial in the
relative displacement and velocity between the rotor and stator
in compression. The nonlinear relationship between load and
deflection have been verified by static tests conducted on com-
plete brake heat-stack assemblies and small-scale coupons.

The brake-rod axial load is assumed to be a function of the
piston-housing torsional and yaw rotations plus the axle- and
center-lug fore-aft deflections.

B. Nonlinear Contact Stress

Assume that the nonlinear normal stress F, acting at the
interface surface between a rotor and stator can be expressed
as a polynomial in the relative displacement and velocity
normal to the friction surface. Then F,, is given by

m

Fo= 2 [Kx' + C¥'] (3)

i=0

where, x and x are the relative displacement and velocity be-
tween the rotor and stator, respectively, i is an integer between
0 and m,and m >1.

The tangential stress F, generated by the brake-friction ma-
terial is

A

F, = p-fbrkﬁn (4)

Consider the schematic representation of a four-wheel,
main-landing gear truck shown in Fig. 3. Each wheel and
brake are modeled as a single rotor and stator having the fol-
lowing degrees of freedom: Rigid-body lateral displacement

forward

T
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and yaw of the stator and rotor (x,, ¢, and x,, b,, respectively);
0, and Q,,.

For any point (r, 6) on the disk surface, the normal displace-
ment and velocity are

x(r, 8) = (x, — x,) — rsin 0(b, — b)) (5)
X(r, 0) = (x, — x,) — rsin 8(b, — &,) (6)

The normal force F, from the normal contact stress is

2n AR,
F, = f f ﬁ,,r dr do 7
0 R,

and the tangential force F, generated by the brake-friction ma-
terial is

F,= p“bran (8)

The brake torque 7 is
2% AR,
T =sgn(Q),, — 6,) f f Mb,kﬁ,,rz dr do 9)
0 R;

The yawing moment M, as a result of normal contact stress is

2m R,
M, = _f f F,r*sin 0 dr do
o R,

Assume that the nonlinear contact stress ﬁ,, in Eq. (3) is
represented by a cubic polynomial in the relative displacement
only, i.e., m = 3. Then, substituting the expression for x(r, 6)

10)

s Qy
’///// l 0 ‘| [— )0, WD—;:>¢,
1 M axle X
Z Yaxle s r
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k] /l:m lYmg
7
7
L P;
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Fig. 3 Degrees of freedom.
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from Eq. (5) into the expressions for F,, T, and M, in Egs. (7),
(9), and (10), yields

F,=KoA> + K, Ax(x, — x,) + ?11A4(¢s - d)r)z[KZ

+ 3Ky(x, — x)] + Ax(x, — K> + Ks(x, — x)] (11)
M, = _A4(¢s - d)r)[?ltKl + %KZ(XS - -xr)]

- %K3A4(~xs - xr)z(d)s - d)r) - TI;K3A6(¢S - ¢r)3 (12)

T = sgn(Q,, — 6){3 pmAs[Ko + Ki(x, — x,)]
+ sl = 0)TK, + Ks(x, — x,)]
+ 3 poaAs(ds — &Kz + 3Ks(x, — x)]) (13)
where

Ay = w(RE — RY), k=2,3,4,5,6 (14)

If the nonlinear contact stress ﬁ,, in Eq. (3) is represented
by a cubic polynomial function of both the normal displace-
ment x(r, 0) and velocity x(r, 8), then additional terms will
appear in the expressions for F,, T, and M, that are functions
of the velocity variables (X,, d,, X,, and &,) and the coefficients
C,. These velocity variable terms will have the same functional
forms as the displacement variable terms shown in Egs.
(11-13).

C. Brake Hydraulic Force

The brake net hydraulic force, which is determined by the
net hydraulic pressure and the net piston area, is given by

thd = PnctAp (15)

D. Brake-Rod Load

The brake-rod axial load F, is a function of 0,, b Yaue
and Yie. Froa 1S given by

K, 6, K, ded)s Kl'(yﬂxlc - ylug)
qu=—Re — R? + R? (16)

E. Slip Ratio

The tire slip ratio S is a function of v, Y., and €,,. It is
defined to be

g L0 =)~ OR) .
(V - yaxlc)

When Q R, equals the net axle velocity (v — Yaue), S is zero.
When (), equals zero, S = 1.0, which corresponds to 100%
slip, the wheel is locked, and the tire skids.

F. Tire-Ground Drag Force

The tire-ground drag force is a function of W, S, and pgu,
which is a nonlinear function of S. The drag force is given by

deg = WP«gm (18)
Mera is an antisymmetric function of S.

Pea(—S) = = pen(S) 19)

G. Equations of Motion

The nonlinear-squeal equations of motion for a single brake
are expressed in terms of the degrees of freedom x,, ¢, x,, b,
05 Yaxter Panter Yiue and .. The center-lug fore-aft deflection
can be retained or neglected as desired.

The equations of motion are given in Eqs. (20-28). For the
fore-aft wheel-pair model, the single-wheel degrees of free-
dom are included for each wheel plus the fore-aft deflection

of the center lug yi,, on the landing-gear lower oleo strut, and
the brake-rod loads from the fore and aft wheels. Equations of
motion for models that include a flexible torque tube are pre-
sented in Appendix B

mx, + CoXy + | Froa|sgn(xy) = Fiya — F, (20)

Lysbs + Copudby + Kyiby — Froad. = +M, @21

I(iés + Clie.s + F R, + P«ph|Fmd|Rb Sgn(e}) =T (22

m %, + Cox, + p(|T|/R)sgn(x,) + K,x,=F, (23)

Id)rd;r + (Cd)r + ka)(b.r - kadiaxlc + K¢r¢r
+ Kwk(d)r - d)axlc) = _Mb (24)

M i Yaxte T Cyaxy.axlc + K1 Yaae T Klzd)axlc = deg — Fra
(25)

Iaxlcd;axlc + (Cd)ax + ka)diaxlc - ka(b.r + Ky Yaae + K22¢axlc
- Kwk(d)r - d)axlc) =0 (26)

1O, = =T + FauR, 27)

mlugy.lug + Clugylug + Klugylug - 2 Froa=0 (28)

III. Coupling Mechanisms

The nonlinear contact stiffness of the brake heat-stack cou-
ples rotor and stator-rigid-body freedoms through the normal
force, yaw moment, and torque, which are functions of the
heat-stack relative displacement. It can be seen in Eqs. (11-13)
that no coupling from F,, M,, and T would occur between the
lateral displacement and yaw freedoms of the heat stack if the
contact-stress relationship were linear, i.e., K, = K5 = 0. These
terms appear in the equations of motion (20-24) and (27).

The contact-stiffness and brake-friction terms (which are
functions of rotor/stator lateral translation and yaw) are asym-
metric in the linearized perturbation equations (given in Sec.
IV) for an equilibrium point of the nonlinear system. This
asymmetry gives rise to potential instabilities associated with
these four degrees of freedom.

The geometry of the brake and landing-gear structure cou-
ples additional degrees of freedom, including, piston-housing
torsional rotation, axle and center-lug fore-aft deflections, and
heat-stack lateral translation and yaw caused by the brake-rod
load terms in the equations of motion (20-22), (25), and (28).
Additional coupling arises from the ground-drag force caused
by tire slip at a low-slip ratio when the torque gain is positive.
These two mechanisms and the coupling induced by the brake-
friction material nonlinearities provide a complete feedback
loop to the system.

It is the combination of the different coupling mechanisms
that permits instability of the primary squeal mode. Both the
geometric and asymmetric coupling, because of the brake-rod
structural terms and the nonlinear contact-stress terms, respec-
tively, must be present to produce the squeal-mode instability.
Either of these coupling mechanisms alone is insufficient to
adequately describe the primary-mode squeal phenomenon be-
ing modeled.

IV. Solution Methodology

The nonlinear squeal equations (20-28) have the form

(MI{x} + [CH{*} + [KHx} = {Fiya} + {Faump}
+ {Faad T {F e} (29)
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where {x} is a vector of the time-dependent variables (degrees
of freedom), [M] is the inertia matrix, [C] is the viscous damp-
ing matrix, and [K] is the structural stiffness matrix. [K] in-
cludes stiffness effects of all brake and landing-gear compo-
nents excluding the brake-rotor and stator stiffnesses that are
specified in {F4q}. The vector {F4q} contains nonlinear con-
tact stiffness terms caused by the relative displacements be-
tween brake rotors and stators. {F,,} is a vector of piston-
hydraulic pressure terms. {Faump} i1s a vector of nonlinear
damping terms because of Coulomb friction. {F..} is a vector
of terms because of the tire-ground drag load

{x} = {x; b 0, X, b Yawe Guve Qo Yig) (30)
{(Foga) = {Fia 0000000 0}7 (1)
{Faumg ={0 000 0 Faug 0 R Fupe 0}7 (32)

{Fas} = {—F, M, T F,— M, 00— T0}" (33)

[ — o] Froa| sgn(x,)
0
~ Wpn| Froa| R, sgn(6,)

T
— |R_| sgn(x,)
{Faamp} = 1 t (34)

S oo O

0

. s

F,, M,, and T are given by Eqs. (11-13), respectively. Fiya,
F . and F4,. are given by Eqs. (15), (16), and (18), respec-
tively.

A. Steady-State Operating Point

For a given net-brake hydraulic pressure P, at equilibrium
conditions, i.e., smooth sliding, the nonlinear equations satisfy
the following conditions:

[K1{xo} = {Fnya} + {Faulxo)} (35)

There can be more than one steady-state operating point at a
given brake pressure because the squeal equations are nonlin-
ear.

B. Stability Analysis

The first step in the solution procedure is to obtain the
steady-state operating point for the full set of nonlinear squeal
equations [Eq. (29)] by solving for the equilibrium point {xo}
in Eq. (35). There will be one or more operating points for the
nonlinear systems being considered here. Stability of the sys-
tem is investigated about each steady-state operating point by
assuming small perturbations {¥} about the equilibrium point
{xo}, where

{x} = {xo} + {x} (36)
{xo} = {x; by 05 X, ) Yaxe Daxte Q,, ylug}g (37)

(£} = (% by 0, % by Vuve bave O Te)”  (38)

Nonlinear damping terms caused by Coulomb friction in the
piston-housing bushings are replaced by equivalent viscous
damping in Eq. (29).

Substitution of Eq. (36) for small perturbations about the
equilibrium point into the nonlinear squeal equations [Eq. (29)]

and neglecting higher-order terms gives the linearized squeal
equations of motion

[M]{x} + [CI{X} + [K]({£} + {x0}) = {Fiya} + {Faulx0)}
+ {Faisk(f)} + {Famg(xo)} + {qug(f)} (39)

The force F,, yaw moment M,, and brake torque T because
of normal contact stress are expressed in terms of both the
equilibrium position {x,} and the perturbation variables {x},
where

F(x) = F(xo) + F (%) (40)
M(x) = My(x0) + M,(X) 41
T(x) = T(xy) + T(X) 42)

F(%) = [K\As + 2K.A3B (%, — %) + 3K:A4By(d, — &)
+ Ki(%, — £)[3A.B + 3A,B}]
+ 3AKBBy (b, — ) + - (43)
M%) = —[4K\As + 3KABJ(ds — b))
%) — 1K:ABAb, — $,)
- FKABD, — b)) + -+ (44)

- A4B¢[%K2 + %K_%B,‘](fs -

T(x) = %p“brkAZ%[Kl + 2K2B,t]('fs - %)
+ %MbrszAsBlb(d;s - d;r) + bekK_%(fs - fr)
X [245B% + 3AsBi] + S puKsAsBBy (b, — &) + o

(45)

A, = w(RE — RY), k=2,3,4,56 (46)
By = X0 — X0 47

By = b0 — dro (48)

Note that constant terms proportional to K, or C, do not appear
in Egs. (43) or (45). They only enter into the steady-state op-
erating point expressions for F,(x,) and T(x,) given in Egs.
(11) and (13), respectively.

Stability analyses (eigensolutions) have been performed on
the linearized squeal equations [Eqs. (39-48)] for small per-
turbations about an operating point of the nonlinear system.
Results from these analyses are presented in a companion pa-
per.® System instability is obtained for certain combinations of
Mok and P, typically with high values of wes and low levels
of P,. In general, the nonlinear contact-stiffness model pre-
dicts system instability at low-braking pressures and stability
at high-braking pressures. Analysis results indicate that system
instability can occur with a constant friction coefficient as has
been observed frequently on both dynamometer and airplane
tests. In general, stability decreases with increasing brake-fric-

Real Part
of
Eigenvalue
(+)

50Pressure
(psi)

0.1 0.3 0;5 0.7 0.9

Friction Coefficient

Fig. 4 Stability as a function of P, and W .
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tion coefficient. Typically, the system is stable at low values
of Wi and unstable at high values.

A typical stability plot as a function of P, and pu« is shown
in Fig. 4. In this figure only the positive real part of the most
unstable root is plotted. It is evident that stability, in general,
is reduced by increasing friction coefficient and decreasing
pressure.

C. Nonlinear Transient Analysis

Time-history response solutions have been obtained using a
fourth-order Runge-Kutta algorithm to integrate the nonlinear
squeal equations [Egs. (20-28)]. Results from these analyses
are also presented in a companion paper.® The response his-
tories have been computed to complement the eigensolution
results, evaluate stability of the nonlinear system near the op-
erating points, evaluate stability of limit cycles and strange
attractors, and determine response amplitudes, e.g., rod loads,
accelerations, etc.

V. Summary and Conclusions

A model has been presented for the analysis of primary
squeal-mode vibration in aircraft brake systems. The destabi-
lizing mechanism in the model utilized mechanical and ma-
terial surface properties of the brake heat stack to couple lateral
translation and yaw of the rotors and stators. Geometric and
stiffness properties of the brake and landing-gear structure cou-
ple piston-housing torsional rotation and axle fore-aft bending
with lateral translation and twist of the heat stack.

The model does not use brake-negative damping and pre-
dicts that system instability can occur with a constant brake-
friction coefficient as has been observed on both dynamometer
and airplane tests. System stability can be altered by changes
in the brake-friction coefficient, pressure, stiffness, geometry,
and various brake-design parameters. Enhanced versions of the
model were presented that include more detailed structural rep-
resentation of the piston-housing torque tube and the hydrau-
lic-flow equations for each piston. The model was extended to
a fore-aft wheel pair on a two-axle, main-landing-gear truck.

Appendix A: Brake Hydraulic Equations

Continuity

Iji = (Bi/vi)(AL,t—l,tVi— Li AL,[,HI Li+1 A S) (Al)

pii

where
i=1,...7 (A2)
Ver = Voo (A3)
Orifice
pAi,i,H 1 .
i — Pin1 = Vi1 | Vi1 T pLis1 Vi A4
p Pit1 2(CoAorr 1)2 , 1| 3 1| pL, Vi (A4)

Continuity at Inlet

Qo + Amvm = Amvm (AS)
pAZ, .
— =——— Vo |Vo| + pLaiV. A6
Po J 2 2(CDAO,01)2 01| 01| PLoiVor ( )
pAZ, ;
s — =—— V| Vool T pLeV. (A7)
Ps — Po 2Cohow) sl Veo| + pLeVeo

Si = )C‘S + ¢.’Sr,, sin 9,- - xph (A8)

6
Fua= D, piy (A9)
i=1
6
Muya= D, piA,r, sin 6; (A10)
i=1
Viscosity Effects
Ap = f(LID)(p/2)V? (A11)
where
f=CANZ” (A12)
Ny = VDiy = &4 (A13)
p
Hence
Ap = (pC,L/2D ')V 7 (A14)

Appendix B: Torque-Tube/Axle Models
The equations of motion for the torque-tube model are given
by

(Mol {®rr} + [Crrl{¥re} + [Krel{xrr} = {Fre} (BD)

where
{xTT}T= |_)71 S1 Y2 S2 V3 S3 Y4 Sa Ys GsJT—r (B2)

’—Fmd‘
M a
_FPH
_MPH

(Fe)={ 7t (B3)

TP
0

M,
0

. Mbt p

The {xyr} degrees-of-freedom y; and s, i = 1, 5, are the
fore-aft deflection and yaw rotation at the centerline of the
brake rod (node 1); the centerline of the piston-housing bush-
ing (node 2); the centerline of the torque-tube pedestal bushing
(node 3); the c.g. of the heat stack (node 4); and the backing
plate (node 5).

F\oa and M4 are the force and moment exerted on the torque
tube by the brake-rod axial load. Feu, Mpu, Fre, and Mp are
the force and moment at the center of the piston-housing and
torque-tube pedestal bushings, respectively. M, is the moment
caused by the relative bending angle between the torque tube
and the stators. My, is the moment caused by the relative bend-
ing angle between the torque tube and the backing plate.

The axle equations of motion are given by

Mawel {F e} + [Conel{Fane} + [Kane{Fave} = {Fane}  (B4)

where
{(Xaae) "= Ly 51 32 S5 Y5 S3duve (B5)
{Fuue} = LFo Meny Fro Map Fage M (B6)
The {x...} degrees-of-freedom y; and s, i = 1, 3, are the

fore-aft deflection and yaw rotation at the centerline of the
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piston-housing bushing (node 1); the centerline of the torque-
tube pedestal bushing (node 2); and the wheel centerline (node
3).

F 4 and My, are the tire- ground drag force and the moment
resulting from the relative bending angle between the axle and
rotors. {F4..} is a function of tire slip where Yoge = Ysaxe 1D
Eq. (17) for S.

F .o is given by

Froa = KioaR.0, — Krodded)s + Krod(yaxlc — Ve T leT) (B7)

and the rod moment is to be either zero or a function of pin
stiffness Kpin

Mupa=0 (B8)
or
M. = Kpin(eTT - glmd) (B9)

Fpy, Mpy, Frp, and Mqp are given by

Feu = Kiee(Yiaxe = Yarr) (B10)
Mpy = Kvpr(S1axte — S211) (B11)
Frp = Kere( Y2aae = Yarr) (B12)
M = Knre(S2a0e — S31r) (B13)

My, My, and M, are given by

M, = Kbp(gSTT - d)ll) (B14)

10

My = 2 Kbk(€3axlc - d),) (B15)
My= > Kysur— &) (B16)

i=13,

where x; and ¢, are the heat-stack axial displacement and yaw
angle, respectively, and i = 1 (pressure plate), i = 2 (rotor 1),
i = 3 (stator 1), i = 4 (rotor 2), and i = 11 (backing plate).
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